Las Derivadas
En cálculo diferencial y análisis matemático, la derivada de una función es la razón de cambio instantánea con la que varía el valor de dicha función matemática, según se modifique el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por eso se habla del valor de la derivada de una función en un punto dado.
Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto para todos los momentos. Un avión que realice un vuelo transatlántico de 4500 km entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21.
Entonces el valor de la derivada de una función en un punto puede interpretarse geométricamente, ya que se corresponde con la pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es, a su vez, la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial.
Definiciones de la derivada
En terminología clásica, la diferenciación manifiesta el coeficiente en que una cantidad cambia a consecuencia de un cambio en otra cantidad .
En matemáticas, coeficiente es un factor multiplicativo que pertenece a cierto objeto como una variable, un vector unitario, una función base, etc.
En física, coeficiente es una expresión numérica que mediante alguna fórmula determina las características o propiedades de un cuerpo.
En nuestro caso, observando la gráfica de la derecha, el coeficiente del que hablamos vendría representado en el punto de la función por el resultado de la división representada por la relación , que como puede comprobarse en la gráfica, es un valor que se mantiene constante a lo largo de la línea recta azul que representa la tangente en el punto de la función. Esto es fácil de entender puesto que el triángulo rectángulo formado en la gráfica con vértice en el punto , por mucho que lo dibujemos más grande, al ser una figura proporcional el resultado de es siempre el mismo.
Esta noción constituye la aproximación más veloz a la derivada, puesto que el acercamiento a la pendiente de la recta tangente es tanto por la derecha como por la izquierda de manera simultánea.

Límite como coeficiente de Diferencias
La derivada de una función es la pendiente geométrica de la recta tangente del gráfico de en . Sin el concepto que se va a definir, no es posible encontrar directamente la pendiente de la línea tangente a una función dada, porque solamente se conoce un punto en la línea tangente: . La idea es aproximar la línea tangente con múltiples líneas secantes que tienen distancias progresivamente más pequeñas entre los dos puntos que cruzan. Cuando se toma el límite de las pendientes de las líneas secantes de esta progresión, se consigue la pendiente de la línea tangente. Se define, pues, la derivada tomando el límite de la pendiente de las líneas secantes, al acercarlas a la línea tangente. Para encontrar las pendientes de las líneas secantes próximas, se elige un número relativamente pequeño. representa un cambio relativamente pequeño en , el cual puede ser positivo o negativo. La pendiente de la recta que pasa por los dos puntos y es:
- . expresión denominada «cociente de Newton».
Derivada de una Función
Considerando la función f definida en el intervalo abierto I y un punto a fijo en I, se tiene que la derivada de la función f en el punto se define como sigue:
,
si este límite existe, de lo contrario, , la derivada, no está definida. Esta última expresión coincide con la velocidad instantánea del movimiento continuo uniformemente acelerado en cinemática.
Aunque podrían calcularse todas las derivadas empleando la definición de derivada como un límite, existen reglas bien establecidas, conocidas como teoremas para el cálculo de derivadas, las cuales permiten calcular la derivada de muchas funciones de acuerdo a su composición sin tener que calcular forzosamente el límite. Tales reglas son consecuencia directa de la definición de derivada y de teoremas anteriores de límites.
También puede definirse alternativamente la derivada de una función en cualquier punto de su dominio de la siguiente manera:
,
La cual representa un acercamiento de la pendiente de la secante a la pendiente de la tangente ya sea por la derecha o por la izquierda según el signo de . El aspecto de este límite está relacionado más con la velocidad instantánea del movimiento uniformemente acelerado que con la pendiente de la recta tangente a una curva.
No obstante su aparente diferencia, es posible demostrar que el cálculo de la derivada con cualquiera de los límites anteriormente expresados, proporciona siempre el mismo resultado.